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Abstract 

The probabilistic approach has been extensively used 
for analysing the statistical meanings of some tradi- 
tional figures of merit. New figures of merit have also 
been introduced; some exploit one-phase and two- 
phase structure seminvariants of the first rank, the 
expected negative and/or  enantiomorph-sensitive 
triplet invariants, and the expected negative and/or  
enantiomorph-sensitive quartets. Other figures of 
merit exploit the distribution of statistical parameters 
connected with PSI(0) and active triplets. A new 
combined figure of merit is shown to be a powerful 
tool for selecting the correct solutions among the 
various sets output by multisolution methods. 

1. Introduction 

For the determination of very complex structures by 
direct methods a large initial set of known phases 
seems to be a basic requirement. This aim can be 
achieved by introducing a large number of permut- 
able phases which are used to generate different phase 
sets. Magic integer sequences (Main, 1977) are often 
employed for phase permutations: a relatively large 
number of phase sets are thereby created among 
which the correct solutions have to be found. Figures 
of merit (FOM) are usually used to screen the set of 
solutions, prior to computing Fourier transforms (E 
map). 
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In general, FOM's are functions based on quan- 
tities which can be expected to have extreme values 
for the correct solution. The expectation relies on a 
probabilistic background and/or on algebraic proper- 
ties. In the SIR program (Nunzi et al., 1984), several 
low-order structure seminvariants and invariants 
are estimated by means of representation theory 
(Giacovazzo, 1977, 1980a). Some of them are actively 
used for phase expansion and refinement, others are 
only employed to compute the FOM's. Since one or 
more FOM's are available for each type of structure 
seminvariant or invariant, the combined figure of 
merit CPHASE, based on a variety of FOM's, is 
expected to be effective in finding the correct solution 
[see Ha~ek, Schenk, Kiers & Schagen (1985) for some 
tests of distribution-fitting methods for centrosym- 
metric structures]. 

A probabilistic approach is also introduced which 
enables us to analyse the statistical meanings of some 
traditionally widely used FOM's. New effective 
figures of merit are devised which, combined with 
CPHASE, give rise to a reliable total combined figure 
of merit CFOM which is expected to be unity for the 
correct solutions. 

2. The combined figure of merit CPHASE 

Overbeek & Schenk (1976) first proposed a FOM 
based on ~l relationships. In the SIR program the 
estimates of the one-phase structure seminvariants of 
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first rank via their second representation are 
improved via the estimates of a special class of two- 
phase seminvariants (Burla, Nunzi, Giacovazzo & 
Polidori, 1981). The phase value Ca of any one- 
phase seminvariant is assumed to be distributed 
according to the von Mises distribution (Cascarano, 
Giacovazzo, Calabrese, Burla, Nunzi, Polidori & 
Viterbo, 1984): 

M(~I ;  01, G1)~-[2"n'Io(G1)] -1 exp [G1 cos ( ~ 1 -  01)]. 

where 01 is the expected value of ~1. The structure 
seminvariants with the largest values of G1 are 
actively used in the phase expansion process, while 
all the seminvariants cooperate to give the following 
figure of merit: 

E wiG1 cos (~ol-01) T1 
SS1FOM = = m 

wlG1DI(G~) B1 

where DI(G)= II(G)/Io(G) and Ii is the modified 
Bessel function of order i. The denominator of 
SS1FOM is the expected value of the numerator; 
wl = 0.5 for seminvariant phases actively used, wl = 1 
for the others. In practice only structure seminvariants 
with restricted phase values are used; for them 
G~DI(G1) is replaced by (G1/2)tanh (G~/2) (the 
same will occur for other invariants or seminvariants 
with restricted phase values which will later be used 
in the FOM's).  

Two-phase structure seminvariants of first rank are 
estimated via their first representation according to 
von Mises-like distributions. The most reliable of 
them are actively used in the phasing procedure, while 
all of them are used in the figure of merit 

~, w2G2 cos ( 4 2 -  02) T2 
SS2FOM - m 

E w2O2D,(O2) B2' 

where 02 is the expected value of the structure 
seminvariant and 42 = ~H, + ~a2" W2 = 0"5 for sem- 
invariants actively used, w2 = 1 for the others. 

Since G1 and G2 are always positive, SS1FOM and 
SS2FOM are expected to be positive and unitary for 
the correct solution. 

On request SIR estimates triplet phase invariants 
via their second representation [i.e. by equation (10) 
of the paper by Cascarano, Giacovazzo, Camalli, 
Spagna, Burla, Nunzi & Polidori (1984)]. The esti- 
mate of a single triplet involves the use of a large set 
of diffraction magnitudes whose contribution often 
allows the identification of negative cosines. The most 
reliable triplets which are estimated positive, ranked 
in order of accuracy, define a new convergence map 
and are actively used in tangent procedures. Triplets 
whose cosines are estimated negative usually have 
reliability too low to be actively used. In the SIR 
program they cooperate to define the figure of merit 

NTREST = Y. G3 cos 43 /E  G3D,(G3) = T3/B3 

where G3 is positive or negative according to whether 
cos 43 is estimated positive or negative respectively. 
Thus NTREST is expected positive and unitary for 
the correct solution. 

In a direct procedure it is often difficult to define 
and. maintain the enantiomorph and in many cases 
one ends up with centrosymmetric solutions. There- 
fore enantiomorph-sensitive figures of merit may play 
an important role in identifying the correct solution 
(van der Putten & Schenk, 1979; Pontenagel, 1984). 
The formula estimating triplets via their second rep- 
resentation provides reliable estimates only when 1631 
is large. Therefore, it is able in principle to estimate 
with high reliability only triplets with phases around 
0 or 7r. In accordance with the theory, enantiomorph- 
sensitive triplets should present a rather fiat distribu- 
tion (G3=0) ,  so that they cannot be reliably fixed. 
On the other hand, they are expected to lie preferably 
around + 7r/2 because of the fact that triplets near to 
0 or ~ have been screened by the corresponding large 
values of I G31. The above considerations legitimize 
the use of the following enantiomorph-specific figure 
of merit: 

FENTRS = 5". sin (I 4 1)/n3 = T~/n3 = (sin 14 1) 
where n 3 is the number of triplets characterized by 
[G3[ values between 0 and 0.2. 

A further effective way of using information con- 
tained in weak reflexions is the NQEST figure of merit 
first proposed by Schenk (1974) (see also De Titta, 
Edmonds,  Langs & Hauptman,  1975): 

EhEkE, Em COS (~ph + ~Ok + ~P, + ~Pm) 
N Q E S T -  

E IEhEkE, Eml 

based on selected 'negative quartets' with h + k + l +  
m = 0 ,  IEhl, IEkl, IE, I, IEml all large and the three unique 
cross terms IEh+kl, JEh+ll, IEk+,l all small. In SIR 
(Busetta, Giacovazzo, Burla, Nunzi, Polidori & 
Viterbo, 1980), negative quartets are estimated via 
their complete first representation, which, in favour- 
able cases, contains more than seven magnitudes. The 
reliability of each quartet is estimated according to 
a yon Mises distribution (see Giacovazzo, 1980b, 
§ 8.3.5) whose parameter (3;4 depends on all the mag- 
nitudes contained in the first representation. The 
above considerations suggest the following FOM: 

NQEST = E G4 cos  4 4 / E  G4D,(G4)= r4/B4. 

G4 is negative if cos  (I)4 is estimated negative. Thus 
NQEST is expected to be unitary for the correct 
solution. 

In our experience G4 proved to be a useful reliabil- 
ity parameter. Its use requires more computing time 
than that of a mere threshold on the magnitudes of 
the cross terms, but it often leads to the identification 
of a more discriminating subset of quartets. Up to 
500 quartets (with largest values of IGI) are chosen 
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Table 1. The values of (~)  = sin -~ (ENANT)  for the 
50 solutions output by SIR for CYCLO 

Correc t  solut ions in bo ldface  type. 

Set (cP) Set (cp) Set (cp) Set (cp) Set ( ~ )  

1 24 11 40 21 25 31 33 41 40 
2 27 12 27 22 30 32 31 42 '27 
3 31 13 28 23 31 33 25 43 25 
4 29 14 24 24 27 34 25 44 27 
5 37 15 29 25 25 35 33 45 27 
6 33 16 25 26 24 36 25 46 31 
7 28 17 32 27 24 37 26 47 29 
8 29 18 20 28 27 38 32 48 30 
9 28 19 25 29 40 39 32 49 25 

10 27 20 20 30 29 40 27 50 27 

for NQEST. They include among others: (a) quartets 
with systematically absent cross reflexions; (b) quar- 
tets with only two cross terms in measurements. In 
this case 0.85G is the parameter used in subsequent 
calculations. 

It should be stressed that NQEST and NTREST 
use different subsets of data; therefore they have to 
be considered independent. Indeed, each quartet in 
NQEST involves the pair ~h+ ~k-- ~,+k and ~0~+ ~m+ 
~h+k having [Eh+d small. On the contrary, NTREST 
exploits triplets estimated negative in spite of the 
large I EhEkEn+kl values. 

The formula estimating quartets via their first rep- 
resentation provides reliable estimates for q~4 only if 
1(341 is large. Therefore, according to the theory, quar- 
tets having [G41 = 0 cannot be reliably estimated. On 
the other hand, they are expected to lie in preference 
in the regions around +~'/2 because quartets lying 
around 0 or ~r are expected to be marked by large 
values of I G4I. Then the following enantiomorph- 
sensitive FOM arises: 

FENQUS = Y~ sin (I ~: ,1) /  /14 -- T'4//n4~-- (sin I ¢,~,1) 

where the average is taken over the n 4 quartets charac- 
terized by [G4[ values between 0 and 0.2 [see van der 
Putten & Schenk (1979) for other enantiomorph- 
sensitive figures of merit]. 

Since (Schenk, 1972) the enantiomorph is easily 
lost in some space groups (e.g. P1, P2~, . . . )  and 
easily maintained in others (e.g. P2~2~21,...), 
FENTRS and FENQUS are not included in the set 
of FOM's and are only used as a warning for the 
user. Solutions for which 

ENANT = (T'3+ T'a)/(n3+ n4) < sin 35 ° 

are explicitly marked by the program. A numerical 
example is shown in Table 1, where the value of 
ENANT for CYCLO (ClaH2oN204; P2~, Z = 4 ;  
Cerfini, Gavuzzo, Fedeli, Lucente, Pinnen & Zanotti, 
1986) is given for the 50 sets output by SIR. The 
second representation formula of triplets played a 
central role for the solution of this MULTAN-resis- 
tant crystal structure. The correct sets (bold in Table 
1) are marked by the largest values of ENANT; all 

Table 2. The values of (~)  = sin -1 (ENANT)  for the 
14 solutions output by SIR for A Z E T  

p.l.e, s tands  for 'poss ib le  loss of  e n a n t i o m o r p h ' .  

Set (cp) Set ( ~ )  

1 24 p.l.e. 8 23 p.l.e. 
2 21 p.l.e. 9 23 p.l.e. 
3 23 p.i.e. 10 29 p.l.e. 
4 18 p.l.e. 11 26 p.l.e. 
5 23 p.l.e. 12 16 p.l.e. 
6 25 p.l.e. 13 18 p.l.e. 
7 23 p.l.e. 14 26 p.l.e. 

wrong solutions show a more or less pronounced loss 
of enantiomorph. 

A complementary example is shown in Table 2: 
ENANT is calculated for 14 sets output by SIR for 
AZET (C21H~6CINO; Pca2~, Z = 8; Colens, Declercq, 
Germain, Putzeys & Van Meerssche, 1974). 

Owing to the well known tendency of this crystal 
structure to lose the enantiomorph, no satisfactory 
solution may be expected among the 14 sets. Accord- 
ingly the program warns the user that the enan- 
tiomorph is probably lost (ENANT calculated from 
published phases is >35°). 

In MULTAN-like programs the combined figure 
of merit is calculated by means of expressions 

F -  Fmi n b E  w fmax- f  (1) 
E W Fmax _ f m i n  frnax - - f m i n  

where the F function symbolizes a FOM which is 
expected to be maximum for the correct solution, and 
the f function is used for FOM's which are expected 
to be minima, w; are weights which reflect the a priori 
confidence of the user in the various FOM's. 

Such a scheme, which works quite well for some 
traditional figures of merit, is unsuitable for our 
FOM's. To give an example, in some structures we 
may estimate very few unreliable one-phase 
seminvariants and a relatively large number of 
reliable negative triplets. In other structures the 
inverse situation may occur. In this view the a priori 
choice of wi appears to be rather arbitrary. As a further 
example, suppose that the dispersion of the values 
of NQEST for the various solutions is large but 
NQEST is never positive. The influence of NQEST 
on the combined figure of merit is large but, prob- 
abilistically speaking, no solution appears to be 
reliable. In other words, the dispersion of the values 
of a given FOM is not an absolute measure of relia- 
bility. 

Since the various phase relations which concur to 
define a given FOM are evaluated singly, the effective- 
ness of each FOM depends on the number of phase 
relations actually used and on their reliabilities. That 
suggests the combined figure of merit: 

CPHASE = ( 7"1 + 7"2 + T3 + T,)/(B~ + B2 + B3 + B4). 
(2) 
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The value of CPHASE for the correct solution is 
expected to be unity. 

It should be stressed that usually NTREST and 
NQEST are dominant components of CPHASE since 
the number of available reliable negative triplet and 
quartet invariants is often larger than the correspond- 
ing number of the one- and two-phase seminvariants 
in SS1FOM and SS2FOM. 

3. A revision of some traditional figures of  merit 

The most widely used FOM's (Declercq, Germain & 
Woolfson, 1979; Karle & Karle, 1966; Cochran & 
Douglas, 1957) are: 

2 ~h -- ~ (0gh)r 
h h 

ABSFOM - 
y~ <~h>- y~ ( ~ h ) ,  ' 
h h 

which can often be reduced to 

RALPHA = E l~-<~>I//~ <~>; (4) 
h l h  

In (3) and (4) ah is the parameter of the Karle & 
Karle (1966) distribution estimating ~0h when involved 
in r triplets, i.e. 

a h =  ~ GjcosOj + ~ Gjsin0j , 
j : l  j = l  

= 2 1 ~ k E h + k l / N  'z2, 0j = 0k~ + 0~_~, 

(oth) is the expected value of ah, and (~h)r is the 
expected value of ah when the phases are supposed 
to be randomly distributed. In SIR O~h, (ah) and (ab), 
can also be calculated by means of the parameters of 
the von Mises distributions relative to the second 
representation of triplets (Cascarano, Giacovazzo, 
Camalli, Spagna, Burla, Nunzi & Polidori, 1984). 

In (5), 

Ot~---- ~ Aj c o s  Oj -it- ~ As sin 0j , 

j = l  / \ j = l  

where h is a reciprocal-lattice vector with [E hi = 0, 

Vh = ~ A 2, Aj = IE,<,E,,-,<,I /N '/:.  
j = l  

kj and h - k s are indices of strong I EI values for which 
phases have been determined. 

In a recent paper (Cascarano, Giacovazzo, Burla, 
Nunzi & Polidori, 1984), the distribution of ah has 
been derived, assuming that 0j, j = 1 , . . . ,  r, are a ran- 
dom sample of circular variables ~0kj + ~0h-k s which 

are independently distributed around the true phase 
value q~h with probability density function fj(0j), 
j = 1 , . . . ,  r. Under these conditions, 

P(ah) = ~  PJo(Pah) ~.. Cj(P, ~b) dp d~ 
j = l  

(6) 

where Jo is the Bessel function of order zero, p and 
~b are two carrying variables associated with ah and 
0h and Cj(p, ~,) is the j th  characteristic function. 

Distribution (6) was reduced to simpler expressions 
in two cases of interest to us: 

(a )The  variables 0j are distributed around q~h 
according to the von Mises distribution M[Oj; q~h, 
Gj]. This situation describes the mathematical condi- 
tions presumably satisfied by phases occurring in 
triplets actively used in the phasing process. 

(b) The variables 0j are uniformly and indepen- 
dently distributed in the interval (0, 27r). This situ- 
ation describes the mathematical conditions presum- 
ably satisfied by the 0j variables when IEh[--~ 0"0. 

By means of those distributions, in §§ 4 and 5 the 
statistical meanings of (3), (4) and (5) will be analysed 
and new FOM's will be introduced. 

4. A distribution for triplets having [Ehl = 0  

4.1. Non-centrosymmetric case 

We are interested in the distribution of a~, when 
the moduli IAjl are known and the variables 0j are 
random variables independently and isotropically 
distributed on the circle. Then, according to Cas- 
carano, Giacovazzo, Burla, Nunzi & Polidori (1984), 

P(a~,)=(2a~,/Vh) exp (--a~,21Vh). (7) 

In accordance with the central limit theorem the 
variable S=~ha~, will be normally distributed 
around (S), given by 

with variance 

= 0 2,5(  
The expectation 

~., a~/~. vlh/2-- PSI(O) = wl/2/2= 0"886 (10) 
h h 

arises from (8), which corrects the relation PSI(0) = 1 
largely quoted in the literature. In its turn (9) justifies 
the expectation 

<11, 
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By the change of variable 4% = a~,/v~,/2, (7) becomes 

P(q'h) = 2q'h exp ( -  q,~). (12) 

It is not surprising that the standardized variable q'h 
has the same distribution as the normalized structure 
factor IEh[ in non-centrosymmetric space groups. 

Knowledge of the distribution (12) allows us to use 
the general statistical procedures aimed at testing if 
an experimental sample with n elements complies 
with the expected distribution. In this view we should: 
(a) divide the real line into p mutually exclusive 
intervals, A, . . . .  ,Ap; (b) calculate the number of 
sample values ni falling into Ai, i= 1, 2 , . . . ,  p; (c) 
calculate P(Ai) according to (12); (d) calculate 

P 
d 2= ~ {[n,-nP(A,)]2/[nP(Ai)]} 

i = 1  

and reject the hypothesis if d2>  C, where C is 
obtained from the tables of the chi-squared distribu- 
tion. If a significance level of a is desired, C = 

2 
X p - - l , l - - o t .  

In a simpler way we could limit ourselves to check- 
ing the first moments of the distribution (12), or also, 
to calculating the percentage of ~h with amplitude 
greater than a given threshold (such procedures are 
usually preferred for checking, by means of Wilson 
statistics, the centro- or non-centrosymmetrical 
nature of the space group). Accordingly, the correct 
solution in a multisolution approach is expected to 
satisfy the following relations: 

- -  -'- 1 (13) \ v~/2/ --0"886; n ~ \ Vh / 

~ ~ - 1  "--0.736; 
n Vh 

n \ v-~ 2 "-0"215 (14) 

where n is the number of h reflexions used by the 
procedure. 

If a correlation between Oh = Ok + Oh-k and q~h exists 
(as frequently occurs for wrong solutions), the 
measured moments (13) and (14) will be larger than 
the expected ones. It may be concluded that the 
correct solutions should be characterized by the smal- 
lest values of the measured moments. 

4.2. The centrosymmetric case 

This case is similar to the one-dimensional random 
walk, each step of the walk confined to the real axes. 
Now 

~h = (j=~l EkjEh-kj)/Nx/2' 
Vh =(j~= IEkjEh-kj ' 2 ) / N  

P( a~,) ~- (27rVh) -'/z exp (-a~,2/ 2Vh). 

According to the central limit theorem the variable 

s=E~ 
h 

will be normally distributed around zero with vari- 
ance equal to 

Z <~2> = Z vh. 
h h 

Therefore the expectations 

) Y'. a h = 0  and (a vh --~ 1 (15) 
h 

arise. On considering the distribution 

P([a~[)=[2/(Trvh)] '/2 exp(--a~,2/2vh) (16) 

the following expectations are derived: 

(~h a ' ) / ( ~  [ h' v~/2)=PSI(O)=(2/Tr)'/2=0"798 
(17) 

(~('~'-('~,'))z)/(~ h Vh)-~0.363 (18) 

where la~l=0.798 v~,/2. Different values are then 
expected for PSI(0) in centro- and in non-centrosym- 
metric space groups. 

By the change of variable 4, = [a ~,]/v~/2 (16) changes 
into 

P(d/h)~--(2/Tr) -~/2 exp (-q,~/2) (19) 

which coincides with the distribution of the normal- 
ized structure factor I Eh[ in centrosymmetric space 
groups. According to § 4.1 the first moments of (19) 
can be used to find the correct solution; in particular, 

( l / n )  2 (la~llv~,/2)~-0"798; 
h 

( 1 / . )  E ( a ~ } / v h )  --- 1 (20) 
h 

(1 / n) 2 ](a~,2/Vh) -- 1[----- 0"968; 
h 

( l / n )  2 [(]a~,]/v~,/2)-(Z/Tr)'/212"-0"363. (21) 
h 

5. Some applications of the distribution P(a) 

5.1. The non-centrosymmetric case 

If r is sufficiently large, P(ah) is normally dis- 
tributed according to 

P(ah)~--[(2~')l/20%] -' exp [--(ah--(ah))2/20 "2] (22) 

where 

(aQ= i GjD,(Gj), (23) 
j = l  

o'2=½ i G2[ I + D2(Gj)-2 DI2(Gj)]. (24) 
j = l  
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According to the central limit theorem the variable 
S = Y~h at  will be normally distributed around ~h (ah) 
with variance ~h tr2. Then the expectation values 

~ (Oth-- ( a h ) ) 2 / ( ~  tr2) = 1 (26) 

arise. Equations (25) and (26) may usefully be com- 
pared with MABS and RALPHA respectively. 

By the change of variable Yh = (ah--(ah))/trh, the 
distribution (22) reduces to 

P(yh)=(2~r) -a/2 exp (-y2/2). (27) 

According to § 4 the first moments of (27) may be 
used for finding the correct solution: in particular, 

( l /n)  ~ lah--(ah)l/trh=0"798 (28) 
h 

( l /n )  E [ ( a h - -  ( O f h ) ) / O ' h ]  2~-- 1 (29) 
h 

( l /n )  Y~ I[(ah-- (ah))/Crh] 2 -  1[-'0"968 (30) 
h 

( l /n)  E {[(Oth--(ah))/Crh]2--(2/'a')} =0"363 (31) 
h 

may be used as a statistical measure of the deviation 
of the experimental from the expected distribution 
of a so that they are expected to be a minimum for 
the correct solution. 

5.2. The centrosymmetric case 

If r is sufficiently large, P(ah) is normally dis- 
tributed according to (22) where 

ah = ~ G~ tanh G~, 
j = l  

tr 2 = ~ G~2(1 - tanh 2 G~), 
j = l  

G~ = IE.EkjE._kj]/ N '/2. 

Then the expectations (25)-(26) and (28)-(31) may 
be used for finding the correct solution. 

6. The combined figure of merit CFOM 

Let us denote 

NPS(0) = (1/qo) ~ a~,/Y./.)1/2, 
h h 

O~12s x NPS(1)=(1 /q I I (1 /n )  Z ( h / V ~ ) ,  
h 

NPS(E)=(1/q2)(1/n)  ~'. [ (O~h2/ / )h)  - 11, 
h 

NPS(3) = (1/q3) • [(0t~/I)1/2)--(¢l'1/2/2)] 2, 
h 

where 

qo = 0.886, ql = 1, q2 = 0.736, q3 = 0.215 

for non-centrosymmetric space groups, and 

qo = 0.798, ql = 1, q2 = 0.968, q3 = 0.363 

for centrosymmetric space groups. NPS(I), I =  
0 , . . . ,  3 are then all expected to be unity. In accord- 
ance with § 4.1 the combined FOM 

PSCOMB =~ { NPS(0) + ~ [NPS(/)]I/2 } ~ = 1  

is expected to be a minimum for the correct solution. 
In practice this does not always occur, mostly 

because of a strong correlation between the FOM's 
based on PSI(0) triplets and the MABS figure of 
merit. Indeed, wrong solutions marked by small 
values of MABS (say 0.4-0.8) are very often charac- 
terized by small values of PSCOMB [the low con- 
sistency among PSI(0) triplets is nothing but the 
consequence of the low consistency among active 
triplets]. On the other hand, solutions characterized 
by large values of MABS (say 0.9-1.3) and small 
values of PSCOMB are often correct. In accordance 
with the above observations we assume: 

1 {NPS(0) + ~-~ [NPS(/)] 1/2 } PSCOMB - 4(MABS ) 
i----1 

In Table 3 we give for DIOLE (CloH1802; I42d, 
Z--16) a summary of figures of merit output by 
tangent formula and including PSCOMB. Set 12 is 
the correct solution; it gives large values of NPS(I), 
I = 0 , . . . ,  3, but the smallest value of PSCOMB. 

Let us now define, for centrosymmetric as well for 
non-centrosymmetric solutions, 

NALF(1) = (1/q~)(1/n) Y. ] S~h-- (ah)]/Crh 
h 

NALF(2) = (1/q2)[~ (Sah--(ah))2/~ tr 2] 

NALF(3)=(1 /q3) (1 /n )  Y~ [(Sa--(a))/Crh] 2 
h 

NALF(  4 ) = (1/ q4) (1/ n ) Y~ I[ ( Sah -- ( ah) ) / trh] 2 -  II 
h 

where S = 1/MABS and 

q~ = 0"798, q2 = I, qa = 1, q4 = 0"968. 

Two considerations suggest rescaling (by S) the 
experimental values of a to the expected ones: 

(1) The moments NALF(I),  I - 1 , . . . ,  4 can easily 
lose any statistical meaning if no rescaling is made. 
Indeed, the experimental a values critically depend 
on the weighting scheme used in the tangent 
refinement, on the starting set, on the number of 
triplets etc. Thus, correct solutions are often marked 
by very different sets of a which, however, give rise 
to similar values of NALF(I). 
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Table 3. MABS, NPS(I), I = 0 , . . . ,  3, and PSCOMB 
for the 12 sets of phases output by tangent formula for 

DIOLE 

Set  M A B S  N P S ( 0 )  N P S ( 1 )  N P S ( 2 )  N P S ( 3 )  P S C O M B  

I 0-51 1.44 1.91 1.75 2.13 2.72 
2 0.51 1.46 2.05 2.02 2.72 2-92 
3 0.57 1.73 2.93 3-02 4.77 3.25 
4 0-52 1.47 2.00 1.87 2.33 2.79 
5 0.65 1.91 3.47 3.73 6.19 3.16 
6 0-65 1.90 3.43 3.69 6.06 3.11 
7 0.66 2.22 4.65 5.16 9.45 3-68 
8 0.55 1.62 2.57 2-67 3.98 3.14 
9 0.52 1.42 2.05 2.11 3.09 2.89 

10 0-66 2-24 4-75 5.30 9.81 3.73 
11 0.67 1-93 3.42 3-61 5.76 3.02 
12" 0-69 1.74 2.93 3.07 4.86 2.68 
5" 1.00 2-27 4-97 5.66 10.35 2.52 

* Indicates the correct solution. 
¢ The last set corresponds to published phases. 

(2) MABS is mathematically correlated with 
NALF(I) :  if no rescaling is made, large NALF(I)  
moments should systematically occur for solutions 
with MABS very different from unity. 

NALF(I) ,  I = 1 , . . . ,  4, are all expected to be unity. 
In accordance with § 5.1 the combined FOM 

A L F C O M B = ~ {  N A L F ( 1 ) + ~  [NALF(/)] ' /2},=2 

is expected to be a minimum for the correct solution. 
In Table 4 we give for TURSCH 10 (C,5H2402, P6322, 
Z =  12) a summary of figures of merit output by 
tangent formula and concerning ALFCOMB. The sets 
3, 6, 9, 11 and 12 are correct solutions, characterized 
by the smallest values of ALFCOMB. 

In their turn PSCOMB and ALFCOMB may be 
collated with MABS and CPHASE to produce the 
overall combined figure of merit 

CFOM = wi {Wl DABS 
i=1 

+ w2 exp [ - ( 1 . 0 -  CPHASE) ' s ]  

+ w3 exp [ - ( A L F C O M B -  1) '5] 

+ w4 exp [ - ( P S C O M B -  1)"5]} (32) 

where DABS = 1 - [MABS - 11. 
It may be noted that: 
(1) The larger the difIerence IMABS-11 (it is 

always assumed DABS-> 0) the smaller the contribu- 
tion to CFOM. Such a criterion does not hold for 
solutions with overcorrelated active triplets (for 
example, the so-called uranium solutions) or for 
solutions with small values of MABS. 

(2) The contribution of any function F to the over- 
all figure of merit (1) is maximum (= 1) when F = Fmax 
and minimum (=0) when F = Fmin even in the case 
in which Fmax - ~  fmin or when F does not comply with 
expectations. A similar observation may be made for 
the function f. In (32) MABS, PSCOMB and 

Table 4. NALF(I), I = 1 , . . . ,  4, and ALFCOMBfor 
the 12 sets of phases output by tangent formula for 

TURSCH 10 

Set  N A L F ( 1 )  N A L F ( 2 )  N A L F ( 3 )  N A L F ( 4 )  A L F C O M B  

1 2.37 7.50 5.68 5.26 2-45 
2 2.27 5.82 5-14 4.74 2.28 
3* 1.49 2.62 2.26 2.02 1.51 
4 2.21 6.04 5-07 4-66 2.27 
5 2.17 5.67 4.87 4-45 2-22 
6* 1.51 2.71 2.33 2.10 1.53 
7 2.24 6.06 5-07 4-65 2-28 
8 2.28 6.29 5.26 4.84 2.32 
9* 1-51 2.71 2.33 2.09 1-53 

10 2.15 5.71 4-81 4-41 2-21 
11" 1.33 2.37 1-79 1.59 1.37 
12" 1.33 1-91 1-71 1.50 1-31 

* Indicate the correct solutions. 

ALFCOMB are always compared with their expected 
values (= 1) so that the contribution of each of them 
to CFOM is maximum (= 1) when the experimental 
and the expected values coincide. The larger the 
difference between the expected and experimental 
values, the smaller the contribution to CFOM. 

(3) DABS, PSCOMB and ALFCOMB are figures 
of merit of asymptotical nature (they should hold for 
large as well as for small structures) while CPHASE 
is calculated via phase relationships whose reliability 
depends on the structural complexity. So CPHASE 
is expected to be comparatively more reliable for 
small than for large structures. 

(4) A comparison of the reliability of the various 
FOM's in CFOM has not been attempted. Thus w,, 
w2, w3, w4 in (32) are in practice consequences of our 
a posteriori confidence in the various FOM's. In our 
experience, for usual structures, 

w, = 0.2; w2 = 1-0; w3 = 1.0; w 4 = 1-4 

are sensible weights. The numerical values wi cannot 
be directly considered a measure of our confidence 
in the various FOM's. For example, the choice w2 < w4 
does not imply that CPHASE is expected to be less 
reliable than PSCOMB: indeed CPHASE is usually 
spread out on a larger interval [say ( -1 ,  1)] than 
PSICOMB [say (1, 2)] and relative weights in CFOM 
take into account this fact too. 

In Table 5 the values of various FOM's for the 
correct solutions are shown for various test structures. 
They are compared with corresponding values for 
published phases and with FOM's corresponding to 
the largest CFOM's relative to incorrect solutions. 

7. Concluding remarks 

A revision of the statistical meaning of some widely 
used FOM's is made and new FOM's are described. 
Each FOM, including the combined CFOM, is expec- 
ted to be unitary for the correct solution. Table 5 
shows that this expected behaviour is frequently 
obeyed and that CFOM is usually a very discriminant 
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Table 5. FOM's  for correct solutions for various test 
structures 

For useful comparison,  the largest FOM's for incorrect solutions 
are given in parentheses (in QUINO no incorrect solution was 
found): FOM's  calculated from published phases are shown in 
square brackets. 

DABS CPHASE ALFCOMB PSCOMB CFOM 
APAPA 0.16 0-97 0.85 0.86 0.89 

(0.15) (0.62) (0.78) (0.86) (0.77) 
[0.04] [1.00] [0.67] [0.92] [0.87] 

AXll8 0.08 1.00 1.00 0.53 0.74 
(0.22) (0.79) (0.04) (0.41) (0.30) 
[0-15] [1.00] [1.00] [0.60] [0.77] 

AZET 0.45 0.90 0.99 0.25 0.68 
(0.45) (0.95) (0.98) (0.30) (0.71) 
[0-27] [1.00] [1.00] [0.93] [0.96] 

CEPHA 0.07 0.97 0-83 0.81 0.87 
(0.18) (0.24) (0.17) (0.44) (0.33) 
[0.09] [1.00] [1.00] [1.00] [0.99] 

CORTI 0.03 0.86 0.54 0.69 0-66 
(0.06) (0.53) (0.30) (0.46) (0.44) 
[0.02] [0.96] [0.61] [0.97] [0.83] 

DIOLE 0.05 0.82 0.71 0.65 0.74 
(0.22) (0.88) (0.23) (0.08) (0.40) 
[0.30] [0.52] [0.99] [1.00] [0.84] 

ERGO 0.05 0.44 0-75 0.82 0.69 
(0.17) (0-51) (0-47) (0-76) (0.61) 
[0.10] [0.65] [0.71] [0.95] [0.79] 

LITHO 0.11 0.89 0.74 0.94 0.85 
(0.24) (0-56) (0-21) (0.39) (0.41) 
[0.06] [0.99] [0.85] [1.00] [0.95] 

PG205 0.07 1.00 1-00 0.72 0.84 
(0.11) (0.85) (0.25) (0.47) (0.42) 
[0.07] [1.00] [1.00] [0.99] [0.99] 

PHOTO 0.04 0-40 0.34 0.29 0.36 
(0.04) (0.38) (0.33) (0.26) (0.34) 
[0.10] [0.89] [0.98] [0.99] [0.97] 

QUINO 0.07 1.00 1.00 0.96 0.97 

[0.10] [1.00] [1.00] [1.00] [0.99] 
TURSCH 10 0.15 1.00 0.95 0.92 0.93 

(0.10) (0.73) (0.32) (0.71) (0.58) 
[0.14] [1-00] [0.97] [0.94] [0.94] 

All the results in the table are obtained by using the second representation 
formula for triplet invariants (Cascarano, Giacovazzo, Camalli, Spagna, 
Burla, Nunzi & Polidori, 1984). References for crystal structures tested in 
this table are not given, for the sake of brevity. The reader is referred to the 
tape distributed by the crystallographic group of the University of York, 
England. 

figure of merit. Deviations from expectations are 
mostly generated by sources such as: 

(a) Poor experimental data and/or  imperfect nor- 
malization procedure. 

(b) The phases of the 'correct' solution sig- 
nificantly deviate (20-35 ° ) from the true phases. Then 
the various FOM's register this situation giving rise 
to a CFOM markedly different from unity. As an 
example (see Table 5) we have introduced in the 
starting set of PHOTO only three magic integers; 
the mean deviation of the best solution phases from 
the published ones is 31 °, and the related CFOM is 
0.36, markedly different from unity. 

(c) Systematic errors are made in the estimation 
of the structure invariants and seminvariants. Wrong 

estimates of the unit-cell contents (then wrong N 
values are used throughout the procedure) or the 
presence of structural regularities are possible sources 
of the errors. In particular, pseudotranslational sym- 
metry is a severe source of errors which may violate 
the fundamental postulates on which the above statis- 
tical analysis is based. For such cases specific FOM's 
have to be devised. 

The above considerations suggest a practical 
criterion; solutions with CFOM --- 1 can be considered 
very promising, solutions with CFOM ~ 1 can be con- 
sidered wrong solutions, unless structural regularities 
(the presence of which is often suggested by a statis- 
tical analysis of the normalization output) may be 
invoked. 

One of us (DV) is indebted to CSI Piemonte for 
financial support. 
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